Basic Ion Exchange and Applications

Bill Koebel
North East Technical Rep
ResinTech, Inc.
ResinTech, Inc.

- Bill Koebel
- Northeast Regional Sales Manager
- Ion Exchange Resins and Activated Carbon
- Experts in water and wastewater ion exchange applications
ResinTech History

- Founded in 1986
- Located in West Berlin, NJ
 - Processing plant
 - Laboratories
 - Sales & Marketing
 - Warehousing
- Other Warehouses
 - Florida
 - Texas
 - California
ResinTech Services

- Technical
 - Resin Rating Projections
 - Laboratory analysis
 - Resin selection
 - Troubleshooting
 - Comprehensive website

- People
 - All sales staff technical experts
 - Available by phone, fax, or email for immediate assistance
Applications

- Pharmaceutical
- Semiconductor
- Textile
- Automotive
- Electroplating
- Beverage
- Hemodialysis
- Pulp & Paper
- Nuclear Power
- Aquaculture
- Laboratory
- Portable exchange
- Residential
- EDM
- Remediation
- Municipal
Topics of Discussion

- History
- How resins are made
- Basic Terminology
- Ion Exchange Process
- Resin Types
- Basic Applications
- Q & A
Desalting of brackish waters mentioned in:
 - The Bible & Ancient Greeks
 - Sir Francis Bacon

1850 - Thompson & Way report to Royal Agriculture Society
 - Exchange of ions in soil
 - Attributed to aluminum silicates

1858 - Eichorn proves reaction is reversible
Synthetic Exchangers

- **1905** - Gans develops synthetic exchanger
 - Called Zeolites, from Greek words *Zein* and *Lithos*
- **1913** - First synthetic zeolites marketed in America
- **1944** - D’Alelio develops cation exchanger based on styrene/DVB copolymer
- **1948** - Anion exchanger developed
Ion Exchange Today

- Tiny plastic beads that have been chemically activated
- They are manufactured products that are made from petrochemical based monomers
Make the Beads

- Styrene
- DiVinyl Benzene (Crosslinkage)
- Suspension Polymerization
- No Water Content
- Neither Cation or Anion resin
- Beads are called co-polymer
- Functionalized to an Ion Exchange resin
Material Properties

- Size between 16 to 50 U.S. Mesh
- Resistance to fracture
- Insoluble
- Permanently attached sites
- High capacity for ions
- Temperature effects negligible
What is Ion Exchange?

- Exchange of undesirable ions for desirable ones
- Selectivity drives the reaction
- The process is reversible via regeneration
Definition of Ions

- Cations – Positively charged ions dissolved in solution
- Anions – Negatively charged ions dissolved in solution
- Law of Electroneutrality – In any solution the number of cations equals the number of anions
Basic Products

- Cation Resins
- Anion Resins
- Mixed Bed Resins
- Selective Resins & Zeolites
Cation Resins

- Used to remove cations from water
 - Hardness, Heavy Metals or all cations
- Strong Acid Cation
 - Typically use Na\(^+\) or H\(^+\) forms
- Weak Acid Cation
 - Typically use Na\(^+\) or H\(^+\) forms
Common Cations

<table>
<thead>
<tr>
<th>Element</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Fe^{2+}</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca^{2+}</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg^{2+}</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na^{+}</td>
</tr>
<tr>
<td>Potassium</td>
<td>K^{+}</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H^{+}</td>
</tr>
</tbody>
</table>
Anion Resins

- Used to remove anions from water
 - Complexes, oxy anions (Cromate, Sulfate, etc.)
- Strong Base Anion
 - Typically use Cl\(^{-}\) or OH\(^{-}\) forms
- Weak Base Anion
 - Typically use Cl\(^{-}\) or free base forms
Common Anions

<table>
<thead>
<tr>
<th>Anion</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate</td>
<td>$\text{PO}_4^{\text{-3}}$</td>
</tr>
<tr>
<td>Sulfate</td>
<td>$\text{SO}_4^{\text{-2}}$</td>
</tr>
<tr>
<td>Nitrate</td>
<td>NO_3^{-}</td>
</tr>
<tr>
<td>Chloride</td>
<td>Cl^{-}</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>HCO_3^{-}</td>
</tr>
<tr>
<td>Hydroxide</td>
<td>OH^{-}</td>
</tr>
</tbody>
</table>
Selective Resins & Media

• Used to remove various ions from water
 – Heavy metals most common

• Chelating Resins
 – Typically use Na\(^+\) or H\(^+\) forms
 – Many types
Ion Exchange Processes

- Softening
- Dealkalization
- Deionization
- Nitrate removal
- Condensate polishing
- Pollution control
Selectivity

- The attraction, of one ion over another, to an ion exchange resin
- Function of ion charge, size and concentration
- For SACs and SBAs:
 - Bigger the ion, higher the charge, the more selective the ion becomes
 - I.e. -3>-2>-1 and +3>+2>+1
Inside the Resin Bead

PS-DVB Resin bead

Polymer chains (polystyrene- PS)

Crosslinks between polymer chains (DVB)
Inside the Resin Bead

Functional sites on polymer
Inside the Resin Bead

Functional sites shown occupied by regenerant ions (i.e. H+)
The Resin Bead in Action

Water contacts resin beads. Beads are ~50% water.
Water containing unwanted ions, in contact with water inside beads, allows ions to diffuse in/out of beads.
The Resin Bead in Action

Calcium ions enter

Hydrogen ions are exchanged and exit producing improved water
Ion Exchange - High Purity Water

C: Carbon

A: Resin

- H^+
- Na^+
- SO_4^{2-}
- Mg^{2+}
- HCO_3^-
- Ca^{2+}
- Cl^-
- OH^-

Exchange process:

C (Carbon) absorbs H^+ and releases OH^-

A (Resin) absorbs OH^- and releases H^+
Ion Exchange - High Purity Water
Ion Exchange - High Purity Water

- H^+
- HCO_3^-
- SO_4^{2-}
- Cl^-
- OH^-
- Na^+
- Mg^{2+}
- Ca^{2+}

(+), (-)
<table>
<thead>
<tr>
<th>Definition Chelating Resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chela: Gr. The pincer like claw(s) of a crab, lobster, or scorpion.</td>
</tr>
<tr>
<td>Ligand: The chemical term for an electron pair donor (Lewis base) when it forms a bond with a metal cation.</td>
</tr>
<tr>
<td>Chelating Resin: Ion exchange resins that have ligands that can bond with metal cations. The ligands may be in addition to or in place of conventional ion exchange sites.</td>
</tr>
<tr>
<td>Selectivity: The preference of an ion exchange material for a particular ion. Selectivity is always relative to a particular operating condition.</td>
</tr>
</tbody>
</table>
Chelating Lobster

Lobster

Fish

Chela
Chelating & Selective Resins

- True Chelating Resins
 - Iminodiacetate (SIR-300)
 - Aminophosphonic (SIR-500)
 - Picolyamine (SIR-1000)

- Selective Resins
 - Thiol (SIR-200)
 - Thiouronium (SIR-400)
 - Exhausted Weak Base (WBMP & SIR-700)
 - Natural Zeolites (SIR-600, greensand, & others)
 - Weak Acid Cation Resins (WACG & WACMP)
 - Nitrate & Perchlorate Selective (SIR-100 & SIR-110)
What Makes a Chelating Resin Selective?

- **Ionic Charge (Valence)**
 - Most chelating resins prefer di-valent ions to mono-valent or tri-valent ions, because the chelant group has two “Chela” (claws).

- **Hydrated Ionic Radius**
 - When the size of the hydrated radius of the ion closely fits the space between the “Chela” the resin is very selective for that particular ion.

- **Ligand Bonding**
 - Nitrogen (and oxygen) can possess an exposed electron pair, making them Lewis bases (electron pair donors). Metals that are Lewis acids form ligands with Lewis bases.
Iminodiacetate Chelant
“SIR-300”

Sodium Form (unstable charge balance)

Copper Form (very stable charge balance)

Ligand bonding
Iminodiacetate Chelant (SIR-300) Operating Limits

- **Dissolved Solids**
 - Unaffected by Sodium and other Group 1A metals (except hydrogen)
 - Practically unaffected by Calcium and other Group 2A metals
 - Selectivity is affected by other complexing agents
 - EDTA blocks exchange entirely for many metals
 - Ammonia affects exchange significantly
 - Chloride has a minor effect on selectivity

- **pH**
 - Optimum pH is usually slightly acidic
 - Selectivity is lower at high pH
 - Loses selectivity below pH of approx. 2.0
Iminodiacetate Chelant (SIR-300) Criteria for Selection

- Removal of divalent Group IV (transition) metals
- High TDS background (greater than 1000 ppm)
- Significant calcium concentration present (equal to or greater than the metal concentration)
- pH is slightly acidic (optimum pH is approx. 4)
Capacity of SIR-300 Various Metals (at saturation)

- Copper
- Nickel
- Iron
TDS Limits of various Resins Used for Metals Removal

- Strong Cation Resin (Hydrogen form) 500 ppm
- Strong Cation Resin (Sodium form) 1,000 ppm
- Weak Cation Resin (Sodium form) 10,000 ppm
- Chelating Cation Resin (Sodium form) no limit
- Mixed Bed Resin 500 ppm
What do we need to Know?

- Viability of ion exchange
 - TDS (or conductivity) with min and max if variable
 - pH and Temperature with min and max if variable
 - basic inorganic analysis of ions (Ca, Mg, Na, Cl, SO4)
 - presence or absence of oxidants
 - presence or absence of complexing agents
 - level and type of organic molecules
 - level of suspended solids
Definitions

- PPM (mg/l) – Parts per Million (milligrams per liter) a measure of the concentration of ions as defined by their weight
- “as CaCO₃” – A measure of the concentrations of ions based on the number of ionic charges.
- Grains – a very small unit of weight, originally equal to a grain of wheat.
Conversion Factors

- 7000 grains = 1 pound
- 17.1 PPM (as CaCO3) = 1 grain per gallon
- 7.48 gallons = 1 cubic foot
- 40% = resin void volume
Resin Selection

- Feedwater analysis
- Desired effluent quality
- Operating conditions
- Economics
- Type of equipment
- Regeneration chemicals available
Typical Resin Life

- Operating Life
 - Cation – 8 to 10 years
 - Anion – 4 to 6 years

- Factors
 - Oxidants
 - Temperature
 - Regeneration frequency
Factors Affecting Resin Performance

- Oxidation
 - Chlorine
 - Temperature
- Loss of capacity
- Fouling
 - Organic
 - Oil
- Loss of resin
 - Backwash loss
Equipment Troubleshooting

- Equipment Failure
- Distribution Problems
- Control malfunctions
- Operator error
- Changing Water analysis
Types of Waste Treated

- **Rinse Waters**
 - Acid and neutral Rinses
 - Alkaline cyanide Rinses
 - EDM Machines
 - PCB washers

- **Plating Baths**
 - Tri chrome

- **Wastewater**
 - End of pipe polishing
Typical Plating Rinse Tank Set-up

- Plating Bath
- Dead Rinse
- First Rinse
- Second Rinse
- Final Rinse

- Pre-filter
- IX Columns
- Sump
Misc Ion Exchange Possibilities

- Silver (and other precious metals)
- Lead (and other heavy metals)
- pH control (by ion exchange buffering)
- Fluoborate (and other exotic ions)
- Carbonate Removal (from cyanide baths)
Bulk Regeneration for base transition metals

- pH Adjustment
- Carbamate precipitation
- Filter Press
- Final Filtration
- Ion Exchange Polishing
Regeneration Sequence

- Backwash
- Chemical Injection
- Displacement / Slow rinse
- Fast Rinse
Backwash

- A flow of water is passed upward through the resin bed
- The resin bed expands and fluidizes
- Suspended solids are removed
- The resin bed is classified, increasing the void space
- Mixed bed backwash also serves to separate the cation and anion beads
Chemical Injection

- A dilute solution of acid or caustic flows through the bed
- The relatively high concentration of hydrogen or hydroxide ions causes a reverse exchange
- The resin is restored to the hydrogen or hydroxide form
Displacement Rinse

- Increases contact time between regenerant and the bottom of the bed
- Helps push remaining regenerant through the bed without significant mixing
- Begins the rinse process
Fast Rinse

- Removes the last traces of regenerant chemical from the resin
- Prepares the resin for the next service cycle
Effluent Water Quality

- Selectivity and Leakage – least strongly held ion first to come off
- Regeneration Dose – the higher the dose, the lower the leakage
Questions & Answer

Bill Koebel
North East Technical Rep
ResinTech, Inc.